

An Insight on the Strategical Approach of Gastro-retentive Drug Delivery System

Shwetha Jain*, Bharath Srinivasan

Department of Pharmaceutics, Faculty of Pharmacy M.S. Ramaiah University of Applied Sciences, Bangalore-560054

*Corresponding Author

Email Id: shwethajain2000@gmail.com

ABSTRACT

Gastro-intestinal tract (GIT) is one of the major parts of the body, which helps in the absorption of the drugs, based on the pKa value drug gets absorbed in the different part of GIT tract. Drugs with the acidic pH is in its un ionizable form and readily gets absorbed in the stomach. The main aim of this article is to understand the different novel strategical approach used to improve the retention time of the drug in the stomach and enhance the absorption of the drug into the systemic circulation. The strategies in GRDDS are Effervescent system, floatation system, highdensity system, magnetic system, ion exchange system, swellable system. The article also focus on the Physiology of Stomach

Conclusion: This article investigate, complies and present the recent and past literatures which focus on the suitable drug candidates for GRDDS, merits, demerits, challenges, Novel GRDDS strategies, applications, marketed GRDDS formulation, patents on GRDDS formulation

Keyword: Gastro-retention drug delivery system, Patents, Physiology of Stomach, Strategies in GRDDS, Drug candidates for GRDDS.

INTRODUCTION (74)

The oral route for the delivery of the medication is considered as one of the oldest and most convenient method. With the new innovations and novelty in this method has made it possible to deliver the medication in a more sustained and controlled manner. GRDDS is the desirable approach for the optimized therapeutic benefit for a drug with narrow absorption window. Drugs get absorbed within the initial parts of Gastro intestinal tract and protect them from getting degraded in the presence of intestinal pH. An increased gastro-retentive enhances the bioavailability, solubility of the BCS class II drugs. To create an effective GRDDS several strategies are used such as high density, low density.

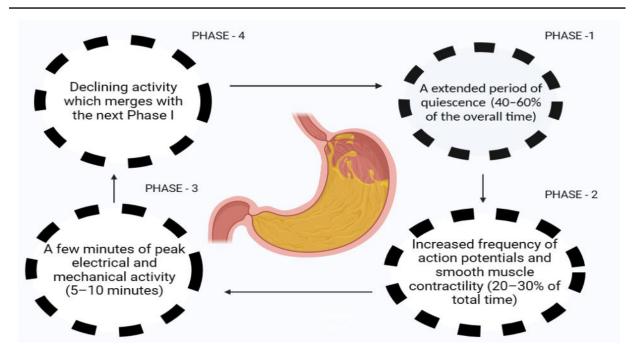
A wide range of drug candidates can benefit from GRDDS in various ways (69, 70, 71)

- 1) Drugs which act on the stomach cells for the local and the better action such as misoprostol, H2 blockers in order to reduce the gastric secretion
- 2) Drugs which are readily get absorbed in the acidic pH in an un ionizable form
- 3) Drugs with limited oral Bioavailability such as dipyridamole (pH- 6.4) and others, whose solubility reduces at the alkaline pH
- 4) Drugs that exhibit the absorption window either follow active transport mechanism or pH dependent solubility for absorption
- 5) Drugs having high affinity in the stomach area but has the less gastric retention time and limited absorption

- 6) Drugs with high plasma fluctuations such as ciprofloxacin, clarithromycin
- 7) Drugs with low solubility in the alkaline pH such as ofloxacin, cinnarizine
- 8) Drugs degrade in colon
- 9) For the drugs with shorter half-life, dosing frequency can be reduced for a better patient compliance
- 10) Control and prolong release of the medicament from the dosage form can be achieved
- 11) Maintaining concentrations consistently above the minimal inhibitory concentration, mainly for the antibiotics, like b-lactams and tetracyclines, to reduce the development of antibiotic resistance (Gupta et al., 2002) 30
- 12) Effective for spatial and temporal distribution of API with a narrow absorption window at a predetermined location and at a predetermined time. (Chine, 1990; Kawatra et al., 2012) 31.32
- 13) Establishing flip-flop pharmacokinetics, particularly for medications with a short half-life, providing control over the kinetics of drug disposition, minimizing negative effects
- 14) Overcomes GET and GRT physiological constraints without harming normal physiology

Limitations of GRDDS

- A. The drug which easily gets degraded in the stomach or the acidic medium are not a suitable candidate for the GRDDS
- B. Drugs which have a gastric irritation are not suitable for this kind of system e.g.-NSAID's
- C. Drugs having a high affinity to colon and has a better absorption in colon are not suitable candidates for GRDDS
- D. The drugs which have limited stability in the acidic pH cannot be used for the GRDDS formulation


Physiology of GRDDS (75)

Stomach plays a very important role in the GRDDS system as the main aim is to enhance the gastric retentive time period of formulation and its very crucial to understand the stomach physiology and anatomy.

The stomach is split into 2 parts anatomically, the first part is the proximal stomach-fundus, body part and other; distal stomach—pylorus and antrum. Major mechanism of stomach is temporarily storage and grinding of the food and pass it to duodenum. Proximal stomach act as the reservoir for undigested and the distal stomach act as pump to help in the gastric emptying process, the gastric emptying rate in the fed state is different from fasted state.

In case of fasted state, in every 120 min, electrical events of myloelectric cycle runs in a cyclic manner through the stomach and the small intestine. During this phase the diameter of the pylorus increases up to 19mm and particle smaller than that of the 19mm can easily exit from pylorus and enter into duodenum.

However, there is a completely different process in the fed state, the activity is generated at 5-10 min after the ingestion of the meal and is a continuous process until the food remain in stomach, which increases gastric retention time. This cycle is considered as the migrating myloelectric cycle or interdigestive myloelectric cycle.

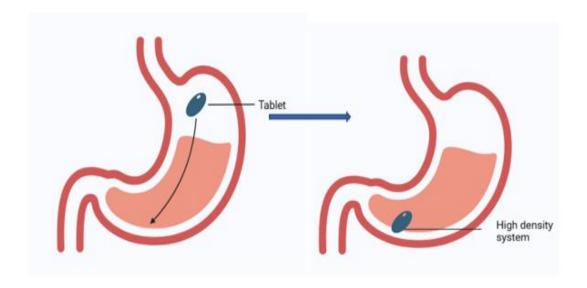
Factors affecting GRDDS efficacy (68)

- 1) Density- Incase of floating tablet the density has to be below 1.004g/ml. whereas, for high density it should be around 2.00g/ml
- 2) Size of dosage form- the dosage form with the diameter of higher than 7.5mm has increased gastric resident time
- 3) Dosage form shape Tetrahedron shape stays in stomach region for a longer period of time with increased gastro-resident, when compare to the other shape.
- 4) Unfed and fed state- In unfed/fasting state the migrating myloelectric cycle is faster when compare to the fed state
- 5) Calories present higher the protein or fats, higher gastric resident time
- 6) Frequency of ingestion of food- higher the frequency of feed, higher is the gastric resident time
- 7) Age Elderly or aged people has high GRT (4.6 ± 1.2 hours), when compare to the Young and the adult people (3.4 ± 0.6 hours)
- 8) Type of food- food with indigestible fatty acid, polymers can alter the GRT
- 9) Pathological factors Crohn's disease or Diabetes can also alter the GRT

Challenges in the GRDDS formulation (36,38)

One of the main challenges in GRDDS is to maintain the drug inside the stomach for a longer time period by maintaining the predetermined drug release. The gastric emptying time is varied from patient to patient and a lot more factor also has an influence on the drug release and the stay of dosage form in the stomach. 36 Drugs with solubility problems in the gastric juice cannot be formulated in the GRRDS Formulation. The position of the body also has a major impact on the formulation. Especially in case of the Floating drug delivery system and amount of the gastric fluid present in the stomach makes an important impact on the formulation success. In case of mucoadhesive formulation, if there is an increased mucus secretion then the formulation can be a failure. Patients with achlorhydria the formulation can be a complete failure because of the fast gastric emptying rate when compare to normal. Whereas, when we look into the unfolding type the problem arise if the unfolding of the formulation from the carrier is not a success or the ability of the formulation to regains its

original form fails. Super porous hydrogel can face stability problems due to the highly unstable polymers. Mucoadhesive system can bind to the oesophagus as they have the ability to bind to mucin which leads to choking and can be of threat if there is a major incident. 38 Some of the factors which affects GRDDS are food intake, gender, calorie content, stage of life, type of food also has an effect on the gastro retention of the formulation 36


Strategies involved in the Gastroretentive Drug Delivery System

A. High density system (13)

The gastric fluid has a density of 1.004g/ml, this system has a density close to 2.5gcm⁻¹, Such system can retain for a longer time in the lower part of the stomach, which also help the formulation to with stand the peristaltic movement in the stomach as the system gets entrapped within the folds of the antrum of the stomach. Normally these formulations are prepared by the addition of the heavy inert materials like iron powder, titanium dioxide, barium sulphate in order to increase the density and the gastro retentive also depends upon the density of the formulation

Disadvantage – it is a challenging task to manufacture with a large amount of drug (>50%) and also to achieve the required density.

B. Floating system/ hydrodynamically balanced system (1,2,6,76)

It was Davis in 1968 who described about the floating system in this method the density of the formulation is less than that of the gastric fluid, the material floats which prolongs the gastric resident time, there is a formation of the cohesive gel barrier and the content should be released slowly to serve as a reservoir. once there is a compete release of the drug, the residual s completely removed from the stomach

I. EFFERVESCENT SYSTEM-

It is made up of an effervescent agent that release carbon dioxide gas when they come into contact with Stomach fluid. This gas is trapped in the developed formulation and alters the buoyancy property which has a major effect on the drug releasing property, these systems normally use the sodium bicarbonate and citric acid to achieve the floatability by effervescences. The stoichiometric ratio of sodium bicarbonate and citric acid for production of gas is 1:0.76

Volatile liquid containing system- Volatilization of an organic solvent can also be applied in order to produce the gas which helps in floating. it contains two chambers which is separated by an impermeable, pressure-responsive, movable bladder. 1st chamber has drug and the other has the volatile liquid. The enhanced gastric retention can be achieved by addition of an inflatable chamber, containing liquid such as cyclopentane and ether which convert into gas at body temperature, which leads to the inflatation of the chamber, there is a continuous release of the drug from the reservoir

Non effervescent System

The polysaccharides/polymer involved has a tendency to swell when in come in contact with water and have a property of gel formation. Polymers involved are polyacrylate, polystyrene, polycarbonate, polymethacrylate.

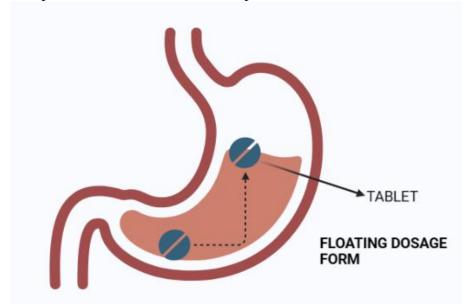
Appropriate mixing of the drug with the polymer, which has the tendency to form a gel result in the enhanced gastro-resident time and also help to maintain the integrity of the density, shape, size of the formulation in the gastric fluid. There are few commonly used excipients such as sodium alginate, calcium chloride, Carbopol, Hypromellose, polyethylene oxide, HPMC.

- Major drawback is the release of the drug depends upon the floating of the dosage form
- This system is divided into the subtypes such as Colloidal gel barrier system
- Alginate beads and Hollow Microspheres.

i. Hydrodynamically balanced microspheres/ colloidal gel barrier system-

These systems include medications that have hydro-colloids that gel and are designed to float on stomach contents. By doing this, the dose of medicine that reaches the absorption sites is increased and the stomach retention duration is prolonged. Useful materials include alginic acid, agar, sodium carboxy methylcellulose, polyacrylate hydroxyethyl cellulose, and HPMC. API and polymer are combined, in a capsule which is hydrodynamically balanced is typically used for administration.

The capsule cover subsequently disintegrates when it comes into touch with water, and the resulting combination expands to form a gelatinous barrier that gives gastric fluid prolonged buoyancy. Because of ongoing surface erosion, water can enter the inner layers


of capsule, keeping the surface hydrated and buoyant. Lipid excipients are used to create formulation having low density that reduce erosion. The Madopar LP formulation, based on this technology, was sold during the 1980s.

ii. Alginate beads-

Calcium alginate that has been freeze-dried has been used to create multi-unit floating formulation. sodium alginate is mixed with the calcium chloride and forms calcium alginate which precipitate and form spherical beads with a diameter of around 2.5 mm. Following the separation of the beads, a porous system that can sustain a floating force for more than 12 hours is created by snap-freezing them in the liquid nitrogen and freeze-drying them at -40 °C for 24 hours. The prolonged residency duration of these beads that floated was exceeds 5.5 hours.

iii. Hollow Microspheres

The innovative emulsion-solvent diffusion approach is utilized to create hollow microspheres that contained API in the outer polymeric shells. Ethanol: Dichloromethane solution was prepared with addition of drug and was agitated by the addition of the polyvinyl alcohol solution with the controlled temperature that is 40 °C, along with an enteric acrylic polymer, the gas is generated which helps in the floating of the microspheres. Polymer used are-cellulose acetate, Eduragit S, calcium alginate, polycarbonate pectin and others. These microspheres float for more than 12 hours.

iv. Micro sponges

These are the highly porous, cross-linked, polymeric microspheres, which entrap the drug within it and release the drug at a predetermined rate and has a particle size of 5-300micrometer, it is used to decrease the drug irritation to the interior part of the stomach without hindering the therapeutic efficiency.37

C. Super porous hydrogels (SPH) (9, 10)

SPH with a three-dimensional assembly and a higher affinity for water are shaped through a close interaction with inorganic solvents. Due to the smaller distances between the interconnected pore framework, they can outfit liquid quickly. The SPH has an extraordinary

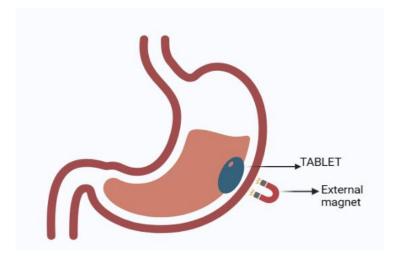
amount of surface area, as well as an intra- or inter-porous empty region. Super porous hydrogel have a pore size $>100\mu m$. This SPH characteristic aids in the framework's ability to withstand a significant amount of solvent, which ultimately causes the swell and rise in surface area phenomenon. SPHs are robust enough to endure stomach emptying and peristaltic motions. It is advantageous to enhance their use in gastro-retentive drug delivery systems because of this specific quality of longer gastric retention period.

When compare to the conventional hydrogel the absorption is delayed process and required a period of time to establish the requirement, in term of Super porous hydrogel the swelling and absorption ratio is high and also require less time for equilibrium. A polymeric material, Ac-Di-Sol (croscarmellose sodium) is also used

D. Bio adhesive/mucoadhesive system-(3,4)

The basic phenomenon is that the dosage form adheres to mucosal layer of the stomach. The creation of electrostatic and hydrogen bonds at the polymer-mucus border is considered to be the mechanism of muco-adhesion. Typically, polymers with an affinity for GI mucosa are used to achieve muco-adhesion. Poly (acrylic acid) Carbopol®, Gantrez®, sucralfate, cholestyramine, sodium alginate, Hydroxypropyl methyl cellulose, sephadex, PEG, chitosan, dextran, poly(alkyl-cyanoacrylate), and polylactic acid are frequently used for bio adhesion The mechanism involved in the bio adhesion is

- a) Wetting theory- The basis of this theory depends upon the polymer ability to swell, spread and contact the mucosal layer
- b) Absorption theory- involves the bio adhesion due to the weak forces such as Vander Waal force, hydrogen bond etc.
- c) Diffusion theory- there is a physical entanglement of mucin chains into the polymer substrate
- d) Electronic theory- there is an electrostatic attractive force between the mucin and the polymer


Major drawback- the highly hydrated stomach contents reduce the bio-adhesiveness of polymers, which makes the system to fail

E. Swelling/Expandable system (35)

The basic phenomenon is the swelling property of the material in use. These systems are based on 3 configurations, the first one is to the smaller configuration which helps in the easy intake of the dosage form orally, the second one is the expandable of the swelling form, in certain way that in blocks its passage through the pyloric sphincter, hence is also known as the plug type system, the last configuration is to come back to this original form that is the smaller one, so that it can easily be evacuated from the body, the swelling is due to the osmosis phenomenon.

F. Magnetic system- (14)

A dosage form for magnetic systems comprises of an internal magnet, additives, and the active pharmaceutical component. To regulate the positioning of the dose form with an internal magnet, an extracorporeal magnet is positioned over the stomach. The GRT can be impacted by the extracorporeal magnet's orientation and magnetic field intensity

G. Ion Exchange System- (15)

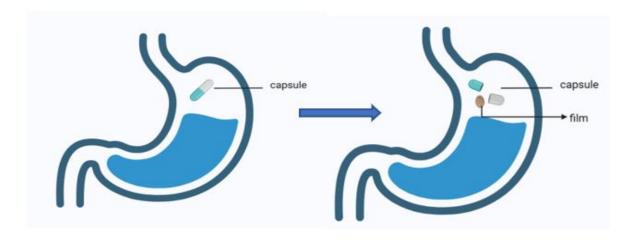
It is the reversible exchange of ions (of like charge) between a liquid and a solid phase without significantly altering the solid's composition or physical characteristics. the solid phases in the IE process, are typically polymers with incorporated ionic moieties. The IE process is referred to as either cation exchange (CE) or anion exchange (AE), depending on the type of ionic species being exchanged. *Atyabi* (1995) Bicarbonate is been added to ion exchange resins and covered with semi permeable membrane. There is a release of carbon dioxide which is trapped inside the coating of the beads, due to this these beads have a longer gastric residence. Theophile was being used for a controlled release and as a gastric retentive system

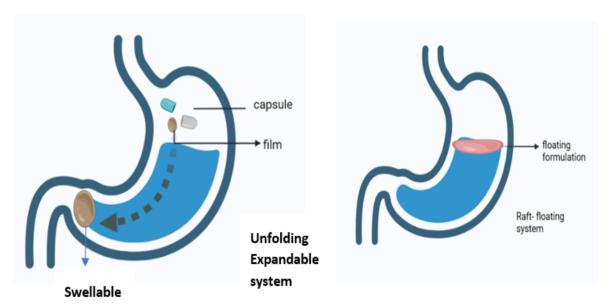
Limitations- difficulty in the determination of the amount of the drug present and also the safety after the ingestion of the dosage form

H. Raft forming system- (7,8)

When the raft-formulation is in touch with gastric contents, they quickly change from a low viscous, to a viscous, expanded floating form. When in contact with gastric fluid, ion-sensitive polymer solutions like sodium alginate and bicarbonates first become viscous. At the same time, carbon dioxide produced by the bicarbonates is trapped in the viscous gel, causing the raft-forming system to float. As with Liquid Gaviscon (Glaxo smith), these systems have the unusual ability to create a physical layer-like effect on the surface of the gastric contents, which can be used to treat gastroesophageal reflux. Polymers used aresodium alginate, pectin, HPMC, Carbopol,

Can be of 3 types- Expandable system, swellable system


Expandable system- the formulation is in the form of easily swallowable. Once, it reaches the stomach it expands to a size which is more than the pyloric sphincter. This help in the increased gastric retention time and also the better therapeutic effect. The unfolding and the swelling types are present in the Expandable system


The unfolding system (6)- here these systems are made up of the biodegradable polymers which are folded and is placed inside the capsule to make it more easily swallowable. Once, the capsule gets inside the body the capsule id degraded and the folded polymer will expand.

These are present in various forms such as the tetrahedron ring, planar and others.

Swellable system – Retains in the stomach mainly due to its mechanical properties, the swelling occurs due to the osmotic absorption of the water, which increases the size. Hydrophilic polymers are commonly used- HPMC, Carbopol, polyethylene oxide, alginate and even the naturally occurring polymer.

PATENTED GRDDS (72, 73,)

Sl.No.	Patent No.	Type of	Approach	Year	References
		Formulation			
1.	US 5769638	Buoyant	In this approach, drugs are	1992	40
		controlled	released at a controlled pace		
		release	regardless of the environment's		
		powder	pH due to a floating controlled		
		formulation	release powder formulation that		
			is put into capsules.		
2.	US 5198229	Self-	This method incorporates a drug	1993	41
		retaining	delivery device with two		

		GRDDS	densities: one low density for		
			drug delivery while floating in		
			gastric fluids, and one higher		
			density for removal from the		
			stomach.		
3.	US 5232704	Bilayer	The dosage form includes a	1993	42
		formulation	capsule with a non-compressed		
			bi-layer formulation, one of		
			them is a floating and the other		
			has a controlled-release layer.		
			The dosage form has an initial		
			density of less than 1, a big		
			diameter compared to its size.		
4.	US 5626876	Floating	This innovation refers to an oral	1997	43
		system	therapeutic device that can float		
			on gastric fluid		
5.	US 6207197	GRDDS	The product has an inner	2001	44
		microspheres	microsphere with a drug and a		
		with a	rate-regulating layer made of a		
		controlled	water-insoluble polymer.		
		release			
6.	US 8277843	Controlled	The structure in question	2012	45
		buoyant	included a core, one or more		
		delivery	layers in which the drug is coated		
		system	on the core, and a hollow area		
			that was already constructed.		
			This technology offered		
			configurable drug delivery in a		
	110 0000 cc0	771 1	controlled manner	2014	4.5
7.	US 8808669	Floating and	This method uses a controlled	2014	46
		swellable	release formulation that has the		
		system	ability to float and swell at acidic		
			pH and distributes the medication		
0	LIC 0214420	Electing	over an extended period of time.	2016	47
8.	US 9314430	Floating	A dosage form with two cylinder ends those floats because of its	2010	47
		system			
9.	US 9561179	Floating	unique size and shape. the dosage form with	2017	48
<i>)</i> .	05 7501177	system	a controlled-release	2017	70
		System	microparticles with a drug placed		
			on their surface		
10.	US 5360793	Raft	it is an Insitu gel, The	2001	18
		formulation	Composition included water,		
		for antacid	preservatives, colorant, xanthan		
			gum, carbonate ions, 0.5-7.0%,		
			0.1%-1.8%, aluminum		
			hydroxide, and 5–50% bulking		
			agent, water and other additives		
11.	US 5068109	Raft for	It was claimed that low	1991	22

	1		T		
		pectin	methoxylated pectin, ranging		
			from 1 to 50% by weight, may be		
			formed into an antacid		
			composition. Along with a		
			buffering agent, this mixture also		
			contained 1-30% by weight of a		
			neutralizing agent such		
			magnesium sub carbonate or		
			potassium bicarbonate as a		
			buffering agent		
12.	US 5681827	Raft for	The development of an oral	1997	25
		Alginate	medication led to suggestions for		
			the treatment of gastritis, peptic		
			ulcer, gastric reflux, esophagitis,		
			and dyspepsia. This preparation		
			was made up of various		
			compositions of sodium		
			alginate, calcium carbonate,		
			potassium bicarbonate, carbomer.		
			Additionally, it contained either		
			sodium saccharin, sodium ethyl		
			Para hydroxybenzoate, sodium		
			butyl Para hydroxybenzoate or		
			sodium hydroxide.		
13.	US 5456918	Raft for	It was asserted that the	1995	26
		Alginate	formulation's composition played		
		C	a key part in the treatment of		
			GORD.		
			This formulation contained 2-		
			15% w/w sodium bicarbonate or		
			potassium bicarbonate, 1.25-10%		
			w/w ranitidine, and 5-35% w/w		
			alginate component. In this		
			composition, an antacid was also		
			chosen to be included from either		
			magnesium trisilicate or		
			aluminum hydroxide.		
14.	US 4140760	Raft for	This pharmaceutical dosage	1979	
		Alginate	form could prevent stomach		
			reflux. it is an <i>insitu</i> gel which		
			floats on the gastric contents of		
			the stomach		
			This liquid product contained		
			1.2-2.0% w/v of calcium		
			carbonate, 0.16–2.6% of sodium		
			bicarbonate, 0.10-1.04% of the		
			calcium carbonate and sodium		
			alginate of low viscosity grade.		
15.	US 4744986	Raft for	Aqueous	1988	24
			i		

		Alainata	antacid Raft formulation was		
		Alginate			
			steady throughout a range of		
			viscosity Alginic acid		
			and aluminum salt, were the key		
4.5	777 0440004	5 0	ingredients in this product	2001	
16.	US 0119994	Raft	This approach entails the	2001	49
		formulation	construction of raft formulation		
			that releases medicine in a		
			predictable, regulated way.		
17.	US 0063980	Raft for	The formulation touches the	2002	50
		pectin	gastric juices, there is a		
			development of raft floating		
			formulation		
18.	US 6797283	GRDDS	It is an extended-release dosage	2004	51
		with multiple	form, more specifically, it applies		
		layers	to multilayered active agent		
			dosage forms with a drug layer		
			and a highly expandable layer.		
19.	US 8586083	GRDDS	A medication made by extrusion	2013	52
		consist of	is part of this technology, which		
		Hydratable	improves stomach retention.		
		polymer	Extrusion makes it possible for		
		polymer	the product to take on a variety		
			of advantageous forms, such as		
			the usage of a sheet made of a		
			hydratable polymer to stop		
			dosage forms from passing		
			through the stomach.		
20.	US 9119793	GRDDS of	a combination of bio adhesive,	2015	53
20.	00 7117173	doxycycline	floating and swellable,	2013	23
		doxycychne	characteristics.		
21.	US	GRDDS	This system uses an enteric	2015	54
21.	20150366832	FOR	polymer that is insoluble in	2013	54
	20130300032	Carbidopa	gastric fluid and a hydrophilic		
		Caroldopa	swelling polymer to increase		
			gastro-retention		
22	US	Osmotic	8	2015	56
22.	20150231084		To accomplish gastro-retention,	2013	30
	20130231064	Floating	the drug is in Inner core is		
		tablet	combined with an outside		
			osmotic core which is a release-		
			delaying polymer, and other		
22	LIC	CDDDCC	components.	2016	57
23.	US	GRDDS of	The combination consists of a pH	2016	57
	20160338949	pregabalin	modifier and a swellable polymer		
			to create a stabilized,		
			gastroretentive pregabalin dose		
2.1	TIG 4102007	TT' 1 1 1	form.	1000	2.
24.	US 4193985	High density	In this technique, a tablet or	1980	26
			capsule with many subunits, each		

			containing a therapeutically		
			active substance, is used. At least		
			some of these subunits have a		
			higher specific weight than the		
			active agent itself.		
25.	US 4938967	High density	These systems include dosage	1990	27
			forms with a minimum subunit		
			density of 2.7 g/ml, which can be		
			achieved by utilizing barium		
			sulphate as a weighing agent, and		
			dosage forms with dimensions of		
			2 mm		
26.	US 4767627	Swelling	This method consists of a	1988	57
		system	swelling dosage form made of an		
			erodible polymer that can release		
			the medication over a long period		
			duration in a regulated manner.		
27.	US 5443843	Swelling and	This method incorporates a drug	1995	58
		expandable	dosage form with one or more		
		system with	retention arms connected to a		
		controlled	controlled release device that,		
		release	when expanded, prevents the		
			device from passing through the		
			stomach		
28.	US 5780057	GRDDS	This device consists of a 2–3-	1998	59
		Swellable	layer tablet, in which one of the		
		tablet	layer when comes in contact with		
			the gastric fluid it swells and		
			increases gastric retention time		
			which also allows the slow		
			release of the drug		
29.	US 5972389	Gastro	This method consists of a tablet	1999	60
		retentive oral	or capsule that contains many		
		swellable	particles made from a		
		system for	combination of the medication		
		sparingly	and the erodible/swellable		
		soluble drug	polymer. Once consumed, the		
			particles inflate and release the		
			medication gradually as the		
20	TIG < 4000 < 2	CDDDG	polymer breaks down.	2002	61
30.	US 6488962	GRDDS	In this method, the oral swellable	2002	61
		tablet	dose forms are precisely		
			designed to resist stomach transit		
			in order to achieve gastro-		
21	110 6540002	Controllad	retention.	2003	62
31.	US 6548083	Controlled	This system consists of a dosage	2003	62
		and prolong	form made from a matrix of		
		release of	polymers that expands when in		
		drug delivery	contact with gastric fluids and		

		system	increases the dosage form's		
		System	retention duration in the stomach.		
32.	US 6723340	Gastro	In this method, poly (ethylene	2004	63
32.	05 0725540	retentive	oxide) and HPMC are used in	2004	0.5
		tablets	conjunction, allowing for both		
		tablets	swelling to aid in gastro-retention		
			and to regulate release of the		
			API from the tablet.		
33.	US 6776999	Expandable	This method places more	2004	64
33.	05 0770777	Gastro	emphasis on drug form than	2004	04
		retentive	polymer characteristics when		
		therapeutical	determining drug release. A		
		system	polymer found in the medication		
		System	delivery device expands when it		
			comes into touch with gastric		
			secretions, making it impossible		
			to remove the device through		
			pylorus.		
34.	US 7976870	GRDDS oral	In this approach, an active	2011	65
31.	05 1710010	dosage form	ingredient is combined with	2011	05
		0.000.00	biocompatible, hydrophilic,		
			biodegradable polymer to		
			provide a dosage form. When the		
			polymer comes into touch with		
			gastric juices, it swells, and as		
			the polymer deteriorates, the		
			drug slowly releases. The		
			polymer erosion rate essentially		
			regulates the rate of drug release.		
35.	US 9393205	Oral tablets	Typically, these systems use	2016	66
			monolithic tablets made of a		
			medication combination and one		
			or more swellable polymers. By		
			ingesting gastric secretions, these		
			polymers swell, causing the		
			tablet to float on the stomach's		
			contents and allowing the		
			medicine to be released		
			gradually.		
36.	US 9801816	GRDDS of	Acamprosate oral dosage for	2017	67
		Acamprosate	gastric retention with extended		
			release (ER) is dispersed in a		
			polymer that is hydrophilic. The		
			polymer matrix swelled once		
			comes in contact with water to a		
			size that allowed the dosage form		
			to be kept in patient stomach in a		
			fed mode and release		
			acamprosate over an extended		

	period of time.	
	1	

GRDDS available in the Market

Sl.No.	Delivery system	Name of the Brand	Active Ingredient	Manufacturing company
1.	Bio adhesive tablet	Xifaxan	Rifampicin	Lupin, India
2.	Floating Capsule (Bilayer)	Cytotec	Misoprostol	Pfizer, UK
3.	swelling system (Multi layer)	Baclofen GRS	Baclofen	Sun Pharma, India
4.	Floating system (colloidal forming system)	Conviron	Ferrous sulphate	Ranbaxy, India
5.	Effervescent floating system	Zanocin OD	Ofloxacin	Ranbaxy, India
6.	Floating effervescent formulation	Riomet OD	Metformin hydrochloride	Ranbaxy, India
7.	Floating effervescent formulation	Cifran OD	Ciprofloxacin	Ranbaxy, India
8.	Floating effervescent liquid formulation	Liquid Gaviscon	Alginic acid and sodium bicarbonate	Reckitt Benckiser Healthcare, UK
9.	Floating formulation (swellable and effervescent formulation)	Prazopress XL	Prazosin hydrochloride	Sun Pharma, Japan
10.	matrix system (Erodible)	Cipro XR	Ciprofloxacin hydrochloride and betaine	Bayer, USA
11.	Unfolding expandable system	Accordion Pill	Carbidopa/levodopa	Intec Pharma, Israel
12.	<i>In-situ</i> formulation	Topalkan	Aluminum magnesium	Pierre Fabre Medicament, France
13.	controlled release floating capsule	Prolopa HBS	Levodopa and benserzide hydrochloride	Roche, UK
14.	Floating formulation	Cefaclor LP	Cefaclor	Galenix, France
15.	Floating formulation	Tramadol LP	Tramadol	Galenix, France
16.	Polymer based swelling	Gabapentin GR	Gabapentin	Depomed Inc., USA

	technology			
17.	Swelling system	Proquin XR	Ciprofloxacin	Depomed Inc., USA
18.	Floating Capsule	Val release	Diazepam	Roche, UK
19.	Gastro-retentive with osmotic system	Coreg CR	Carvedilol	GlaxoSmithKline
20.	Floating formulation (foam based)	Inon Ace	Simethicone	Sato pharma, Japan
21.	Gas Generating tablets (floating system)	Oflin OD	Ofloxacin	Ranbaxy, India
22.	Controlled release Floating capsule	Madopar	Levodopa and Benserzide	Roche, UK
23.	Swelling system	Glumetza	Metformin hydrochloride	Depomed, USA
24.	Floating system	Almagate Flot-Coat	Aluminum and magnesium mixture	Ranbaxy, India

Evaluation Parameters

S.No.	Method	Evaluation Parameters	Reference
1	Low-density, Raft-forming	Total Floatation time, floating	1, 2
	system	strength, floatation lag time,	
		density or specific gravity	
2	Super porous hydrogel system	Swelling index, water retention,	9, 10
		drug entrapment efficiency,	
		water uptake capacity	
3	Mucoadhesion system	Viscosity, Rheology	4, 34
4	Expandable system	In Vitro unfolding study	35
5	Resin system (Ion-exchange)	Size of the particle, moisture	15, 16
		content, ion exchange capacity	
6	In-vivo studies	Gamma Scintigraphy, radiology,	35, 36
		Gastroscopy, Magnetic marker	
		monitoring (MMM), X- ray,	
		Radiology, Magnetic resonance	

Example for the GRDDS Research on Various Strategy

S.No.	Name of the drug	Type of system	Polymer used	References No.
1	Levofloxacin	Floating tablet	HPMC K 100	1
	hemihydrate		LV	
2	Moxifloxacin	Floating tablet	HPMC K 100 M	2
3	Moxifloxacin	Bio Adhesive	HPMC K 100 M	3
	HCl	tablet		
4	Risedronate	Muco Adhesive	Sodium alginate	4

	Sodium	microspheres		
5	Cinnarizine	Film	Ethyl cellulose and HPMC K 15	5
6	Carbamazepine	Floating tablets	HPMC K4M	6
7	Calcium carbonate	IN-SITU gel	Xanthan gum, HPMC K 100 M	7
8	Lafutidine	IN-SITU gel	Sodium alginate, HPMCK4M and xanthan gum	8
9	Esomeprazole	Super porous hydrogel	Polyvinyl alcohol, chitosan	9
10	Polymer material	Super porous Hydrogel	Ac-Di-Sol	10
11	Pregabalin	Non- effervescent tablet	НРМС, НРС	11
12	Gabapentin	Swelling	Polyethylene oxide and HPMC K100M	12
13	Famotidine	High density osmotic pump tablet	Polyethylene oxide, iron powder	13
14	Acyclovir	Magnetic system	Magnetic granules	14
15	Theophylline	Ion exchange system	Ion exchange resin beads coated with Eudragit RS	15
16	Domperidone	Ion exchange system	Sodium alginate	16
17	Valsartan	In-situ gel	HPMC K 100 M, Sodium alginate Imaging, Ultrasonography	17

REFERENCES

- 1) D, N., SB, S., MS, P., & AD, C. (2012). Design and optimization of levofloxacin gastroretentive tablets. *RGUHS Journal of Pharmaceutical Sciences*, 2(1), 38–45. https://doi.org/10.5530/rjps.2012.1.5
- 2) Khan, A., Sadak Vali, C., Pratibha Bharati, M., Khanam, A., Shaoukhatulla, M., Kumar, M. P., & Naik, B. N. (2022). Fabrication, Characterization And Optimization Of Gastro Retentive Floating Tablets Of Moxifloxacin Using Natural And Semisynthetic Polymers. www.ejpmr.com
- 3) Gunda, R. K., & Vijayalakshmi, A. (2019). Formulation development and evaluation of gastro retentive bio adhesive drug delivery system for Moxifloxacin. HCL. *Indian*

- *Journal of Pharmaceutical Education and Research*, 53(4), 724–732. https://doi.org/10.5530/ijper.53.4.137
- 4) Gedam, S., Jadhav, P., Talele, S., & Jadhav, A. (2018). "Effect of crosslinking agent on development of gastroretentive mucoadhesive microspheres of risedronate sodium." *International Journal of Applied Pharmaceutics*, 10(4), 133–140. https://doi.org/10.22159/ijap.2018v10i4.26071
- 5) Verma, S., Nagpal, K., Singh, S. K., & Mishra, D. N. (2014). Unfolding type gastroretentive film of cinnarizine based on ethyl cellulose and hydroxypropylmethyl cellulose. *International Journal of Biological Macromolecules*, 64, 347–352. https://doi.org/10.1016/j.ijbiomac.2013.12.030
- 6) Gohel, M. C., Mehta, P. R., Dave, R. K., & Bariya, N. H. (2004). A more relevant dissolution method for evaluation of floating drug delivery system. *Dissolution Technologies*, 11(4), 22–25. https://doi.org/10.14227/DT110404P22
- 7) Moganti, M., & Shivakumar, H. N. (2021). Oral raft forming in situ gelling system for site specific delivery of calcium. *Journal of Drug Delivery Science and Technology*, 61. https://doi.org/10.1016/j.jddst.2020.102113
- 8) Srinivas, L., & Sagar, S. (2022). Design, Optimization, And Evaluation Of Raft Forming Gastro Retentive Drug Delivery System Of Lafutidine Usingbox–Behnken Design. *International Journal of Applied Pharmaceutics*, 14(1), 266–274. https://doi.org/10.22159/ijap.2022v14i1.43358
- 9) Raghu Kiran, C. V. S., & Gopinath, C. (2020). Development and evaluation of interpenetrating polymer network based super porous hydrogel gastroretentive drug delivery systems (SPH IPN-GRDDS). *Materials Today: Proceedings*, 46, 3056–3061. https://doi.org/10.1016/j.matpr.2021.02.381
- 10) Chen, J., & Blevins, W. E. (2000). Gastric retention properties of super porous hydrogel composites. In *Journal of Controlled Release* (Vol. 64). www.elsevier.com/locate/jconrel
- 11) Kim, S., Hwang, K. M., Park, Y. S., Nguyen, T. T., & Park, E. S. (2018). Preparation and evaluation of non-effervescent gastroretentive tablets containing pregabalin for once-daily administration and dose proportional pharmacokinetics. *International Journal of Pharmaceutics*, 550(1–2), 160–169. https://doi.org/10.1016/j.ijpharm.2018.08.038
- 12) Bret Berner Depomed, Inc. Gastric retained gabapentin dosage form US8333992B2
- 13) Guan, J., Zhou, L., Nie, S., Yan, T., Tang, X., & Pan, W. (2010). A novel gastric-resident osmotic pump tablet: In vitro and in vivo evaluation. *International Journal of Pharmaceutics*, 383(1–2), 30–36. https://doi.org/10.1016/j.ijpharm.2009.08.043
- 14) Tripathi, J., Thapa, P., Maharjan, R., & Jeong, S. H. (2019). Current state and future perspectives on gastroretentive drug delivery systems. In *Pharmaceutics* (Vol. 11, Issue 4). MDPI AG. https://doi.org/10.3390/pharmaceutics11040193
- 15) Atyabi, F., Sharma, H. L., Mohammad, H. A. H., & Fell B', J. T. (1996). controlled release Controlled drug release from coated floating ion exchange resin beads. In *Journal of Controlled Release* (Vol. 42).
- 16) Daihom, B. A., Bendas, E. R., Mohamed, M. I., & Badawi, A. A. (2020). Development and in vitro evaluation of domperidone/Dowex resinate embedded gastro-floatable emulgel and effervescent alginate beads. *Journal of Drug Delivery Science and Technology*, 59. https://doi.org/10.1016/j.jddst.2020.101941
- 17) Himawan, A., Djide, N. J. N., Mardikasari, S. A., Utami, R. N., Arjuna, A., Donnelly, R. F., & Permana, A. D. (2022). A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. *European Journal of Pharmaceutical Sciences*, 168. https://doi.org/10.1016/j.ejps.2021.106057

- 18) Yawei Ni, M. Kenneth, Yates In situ gelation of pectin substance, US patent 01199941, February 28, 2001.
- 19) Gillian Eccleston, Ronald Paterson, Gastric raft composition, US patent 0063980, Oct 29, 2002
- 20) Withington, R. U.S. Pat. 4,140,760 (1979)
- 21) Quirk, C.; Jackson, D. A.; Cameron, J. M. U.S. Pat. 5,456,918 (1995)
- 22) Foldager, J.; Toftkjor, H.; Kjorn, K. U.S. Pat. 5,068,109 (1991)
- 23) Brooks, W. U.S. Pat. 5,360,793 (1994).
- 24) Luber, J.; Feld, K. M.; Harwood, R. J.; Grim, W. M. U.S. Pat. 4,744,986 (1988).
- 25) Field, P. U.S. Pat. 5,681,827 (1997)
- 26) Quirk, C.; Jackson, D. A.; Cameron, J. M. U.S. Pat. 5,456,918 (1995).
- 27) Bechgaard, H., Pederson, A.M. Multiple-units drug dose. US4193985 (1980).
- 28) Newton, J.M., Devereux, J.E. Pharmaceutical formulations. US4938967 (1990).
- 29) Dennis, A., Dimmins, P., Lee, K. Buoyant controlled release powder formulation. US5769638 (1992).
- 30) Gupta, P., Vermani, K., Garg, S., 2002. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569_579.
- 31) Chine, Y., 1990. Controlled and modulated release drug delivery systems. In: M. Dekker (Ed.), Encyclopedia of Pharmaceutical Technology, New York.
- 32) Kawatra, M., Jain, U., Ramana, J., 2012. Recent advances in floating microspheres as gastro-retentive drug delivery system: a review. Int. J. Recent Adv. Pharm. Res. 2, 5_23.
- 33) Gurav, Y., & Sayyad, F. (n.d.). Design of Multi-particulate Regioselective Drug Delivery System of Moxifloxacin using Curdlan Gum. In *Curr. Pharm. Res* (Vol. 2019, Issue 3). www.jcpronline.in/
- 34) Gunda, R. K., & Vijayalakshmi, A. (2019). Formulation development and evaluation of gastro retentive bio adhesive drug delivery system for Moxifloxacin. HCL. *Indian Journal of Pharmaceutical Education and Research*, 53(4), 724–732. https://doi.org/10.5530/ijper.53.4.137
- 35) Klausner, E. A., Lavy, E., Friedman, M., & Hoffman, A. (2003). Expandable gastroretentive dosage forms. In *Journal of Controlled Release* (Vol. 90, Issue 2, pp. 143–162). Elsevier. https://doi.org/10.1016/S0168-3659(03)00203-7
- 36) Mandal, U. K., Chatterjee, B., & Senjoti, F. G. (2016). Gastro-retentive drug delivery systems and their in vivo success: A recent update. In *Asian Journal of Pharmaceutical Sciences* (Vol. 11, Issue 5, pp. 575–584). Shenyang Pharmaceutical University. https://doi.org/10.1016/j.ajps.2016.04.007
- 37) Patel, S., Aundhia, C., kumar Seth, A., & Shah, N. (2016). Microsponge: A Novel Approach In Gastro-Retention Drug Delivery System (GRDDS) Formulation and Evaluation of Floating Tablet of Norfloxacin View project Biochemical and Pharmacological investigation of some antidiabetic and antihyperlipidemic drugs in combination with antioxidants on the levels of adipocytokines in metabolic syndrome View project. www.iajpr.com
- 38) Patil, S., Rathi, M., & Misra, A. (2020). Applications of Polymers in Gastric Drug Delivery. In *Applications of Polymers in Drug Delivery* (pp. 77–104). Elsevier. https://doi.org/10.1016/B978-0-12-819659-5.00003-3
- 39) Patel, R., & Vaishnav, G. (2020). Raft Forming System Gastroretentive drug delivery system. *International Journal of Advanced Engineering, Management and Science*, 6(12), 515–519. https://doi.org/10.22161/ijaems.612.5
- 40) Dennis, A., Dimmins, P., Lee, K. Buoyant controlled release powder formulation. US5769638 (1992).

- 41) Wong, P.L., Theeuwes, F., Larsen, S.D. Self-retaining gastrointestinal delivery device. US5198229 (1993).
- 42) Franz, M.R., Oth, M.P. Sustained release bilayer buoyant dosage form. US5232704 (1993)
- 43) Muller, W., Anders, E. Floating system for oral therapy. US5626876 (1997).
- 44) Illum, L., Ping, H. Gastroretentive controlled release microspheres for improved drug delivery. US6207197 (2001).
- 45) Singh, A., Singh, S., Puthli, S., Tandale, R. Programmable buoyant delivery technology. US8277843 (2012).
- 46) Muthusamy, R., Kulkarni, S.G. Gastroretentive, extended release composition of therapeutic agent. US 8808669 (2014).
- 47) Grenier, P., Nhamias, A., Veergnault, G. Floating gastric retentive dosage form. US9314430 (2016).
- 48) Castan, C., Caisse, P. Controlled-release floating pharmaceutical compositions. US9561179 (2017).
- 49) Yawei, N., Kenneth, M.Y. *In situ* gelation of pectin substance. US01199941 (2001).
- 50) Gillian, E., Ronald, P. Gastric raft composition. US0063980 (2002).
- 51) Edgren, D.E., Jao, F., Wong, P.L. Gastric retention dosage form having multiple layers. US6797283 (2004).
- 52) Mohammad, H. Gastroretentive drug delivery system comprising an extruded hydratable polymer. US8586083 (2013).
- 53) Bakan, D.A., Jitprabhai, W., Newhard, S.B., Wotzman, M.S. Gastroretentive dosage forms for doxycycline. US9119793 (2015).
- 54) Navon, N., Moor, E., Kirmayer, D., Kluev, E., Carni, G. Carbidopa/ Levodopa gastroretentive drug delivery. US20150366832 (2015).
- 55) Kumar, V., Ahmad, S., Singh, R.B., Singla, A.K. Osmotic floating tablets. US20150231084 (**2015**).
- 56) Kumar, V., Ahmad, S., Singh, R.B., Nayyar, K., Mohan, P. Stabilized gastroretentive tablets of pregabalin. US20160338949 (2016).
- 57) Caldwell, L.J., Gardner, C.R., Cargill, R.C. Drug delivery device which can be retained in the stomach for a controlled period of time. US4767627 (1988).
- 58) Curatolo, W.J., Lo, W. Gastric retention system for controlled drug release. US5443843 (1995).
- 59) Conte, U., Maggi, L. Pharmaceutical tablet characterized by a showing high volume increase when coming into contact with biological fluids. US5780057 (1998).
- 60) Shell, J.W., Louie-Helm, J. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter. US5972389 (1999).
- 61) Berner, B., Louie-Helm, J. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms. US6488962 (2002).
- 62) Wong, P.L., Dong, L.C., Edgren, D.E., Theeuwes, F., Gardner, P.I., Jao, F., Wan, J.J. Prolonged release active agent dosage form adapted for gastric retention. US6548083 (2003).
- 63) Gusler, G., Berner, B., Chau, M., Pagua, A. Optimal polymer mixtures for gastric retentive tablets. US6723340 (2004).
- 64) Krumme, M. Expandable gastroretentive therapeutical system with prolonged stomach retention time. US6776999 (2004).
- 65) Berner, B., Louie-Helm, J., Shell, J.W. Gastric retentive oral dosage form with restricted drug release in the lower gastrointestinal tract. US7976870 (2011).
- 66) Kumar, V., Ahmad, S., Singh, R.M. Gastroretentive tablets. US9393205 (2016).

- 67) Berner, B., Chen, C. Gastric retentive dosage forms for extended release of acamprosate into the upper gastrointestinal tract. US9801816 (2017).
- 68) Prajapati, V. D., Jani, G. K., Khutliwala, T. A., & Zala, B. S. (2013). Raft forming system An upcoming approach of gastroretentive drug delivery system. In *Journal of Controlled Release* (Vol. 168, Issue 2, pp. 151–165). https://doi.org/10.1016/j.jconrel.2013.02.028
- 69) Gupta, P., Vermani, K., Garg, S., 2002. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569_579
- 70) Chine, Y., 1990. Controlled and modulated release drug delivery systems. In: M. Dekker (Ed.), Encyclopedia of Pharmaceutical Technology, New York.
- 71) Kawatra, M., Jain, U., Ramana, J., 2012. Recent advances in floating microspheres as gastro-retentive drug delivery system: a review. Int. J. Recent Adv. Pharm. Res. 2, 5 23
- 72) Kumar, M., & Kaushik, D. (2018). An Overview on Various Approaches and Recent Patents on Gastroretentive Drug Delivery Systems. *Recent Patents on Drug Delivery & Formulation*, 12(2), 84–92. https://doi.org/10.2174/1872211312666180308150218
- 73) Sadhu, P. K., Baji, A. A., Shah, N. v., Seth, A. K., Dash, D. K., Aundhia, C. J., & Kumari, M. (2020). An approaches and patents on controlled release gastroretentive drug delivery system a review. In *International Journal of Pharmaceutical Research* (Vol. 12, Issue 2, pp. 2047–2059). Advanced Scientific Research.
- 74) Jassal, M., Nautiyal, U., Kundlas, J., & Singh, D. (2015). A review: Gastroretentive drug delivery system (grdds). *Indian Journal of Pharmaceutical and Biological Research*, 3(01). https://doi.org/10.30750/ijpbr.3.1.13
- 75) Hunt, R. H., Camilleri, M., Crowe, S. E., El-Omar, E. M., Fox, J. G., Kuipers, E. J., Malfertheiner, P., McColl, K. E. L., Pritchard, D. M., Rugge, M., Sonnenberg, A., Sugano, K., & Tack, J. (2015). The stomach in health and disease. *Gut*, *64*(10), 1650–1668. https://doi.org/10.1136/gutjnl-2014-307595
- 76) Prajapati, V. D., Jani, G. K., Khutliwala, T. A., & Zala, B. S. (2013). Raft forming system An upcoming approach of gastroretentive drug delivery system. In *Journal of Controlled Release* (Vol. 168, Issue 2, pp. 151–165). https://doi.org/10.1016/j.jconrel.2013.02.028